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SPIRAL SYNTHESIS 

Tracy Lind Petersen 

WHY SPIRALS? 

Spiral formations are known to occur in the structure of proteins and in the great arms of the Andromeda nebula. Spirals 
twist their way through an amazing variety of things, including seashells, plants, and DNA. Because of the structure of 
their eyes, even certain insects follow the path of a logarithmic spiral as they make their way into the candle flame.  

It is also true that acoustic energy is ultimately converted to neural impulses within the auditory nerve at the location of 
the inner ear, which has a spiral geometry rather like that of the seashell. Perhaps by coincidence, when the frequency 
sensitivity of the ear is given a signal processing interpretation, the z transform representation of this sensitivity places 
simple resonances along a spiral curve in the z transform domain. The time-waveforms which emerge as responses 
(impulse responses, in the language of signal processing) from a given resonance also turn out to be complex spirals 
which we will soon discuss in greater detail.  

We might speculate, since nature has had some time to invoke natural selection in the synthesis of these 
microtransducers we call our ears, that we have in some sense a very special mechanism with which to decode the 
acoustic world. Indeed, the spiral chamber of the inner ear (cochlea) is of essentially the same structure, within a scale 
factor, in cats, humans, and elephants (Greenwood 1962). It is sometimes stated that the ear performs Fourier frequency 
analysis. In fact, the peripheral auditory system performs a type of filter-bank analysis with a frequency-dependent 
bandwidth characteristic (Scharf 1961) which differs considerably from short-time Fourier analysis. These measured 
auditory bandwidths are of such a fundamental nature that they are called critical bands. The critical band transform 
(CBT) (Petersen 1980; Petersen and Boll 1983) facilitates the representation of acoustic signals in terms of auditory 
critical bandwidth parameters. CBT analysis allows us to view acoustic signals in terms of complex spirals which are 
easily synthesized with a simple recursive technique. Furthermore, these spirals are naturally represented in terms of 
quadrature sinusoids modulated in both amplitude and phase. While the development of this spiral synthesis technique 
proceeds from the theory of z transforms, the method will be presented with an emphasis on that which is intuitive.  

MOVING THE SPIRAL 

If we stretch a helical spring parallel to the wall and floor of a room and project its (stationary) shadow on the wall, we 
see a sine wave. If, without moving the spring, we project its shadow on the floor, we see a second sine wave which is 
out of phase with the one on the wall by ±90°. While this is an idealized picture, if we accept the spring shadow on the 
wall as the function cos(t) and its projection on the floor as sin(t), then the sinusoid on the wall is said to be in 
quadrature with the one on the floor. Figure 3.1 is an illustration of two such waveforms, projected from a single spiral. 
In the language of signal processing, we are talking about an analytic signal where the real part is projected on the 
"wall" (labeled Re) and the imaginary part is projected on the "floor" (labeled Im).  

Page 1 of 7Spiral Synthesis

25/12/2006http://staff.washington.edu/bradleyb/spiralsynth/spiral.html



The purpose of this visual analogy is to show that sinusoids are representable as projections of a spiral in three-
dimensional space onto a flat surface. Mathematically, sine waves may be expressed in terms of this spiral. Our 
synthesis technique will allow us to control the evolution of such a spiral as it is being generated.  

The graphical representation of an acoustic waveform gives us a picture of sound in time. Our shadow projections in the 
previous example are such pictures. It is often desirable to represent a given sound in terms of its freqency content as 
well, and such frequency "pictures" may be obtained through an application of, for example, Fourier, Laplace, or critical 
band transform techniques. When we work with sampled waveforms, the z transform domain is very useful. Sampled 
time-waveforms have corresponding z transform representations which reveal their frequency content. Also, certain 
classes of filters have convenient representations in the z transform domain. We refer to this domain as the z plane.  

The z plane allows us to construct a simple picture which will help to explain our synthesis technique intuitively. The 
picture also allows us to introduce a basic mathematical concept which underlies the approach. We will begin by 
describing the z plane picture of a simple resonant filter. Figure 3.2 shows a resonant point, or pole, marked by a cross 
in the z plane. For our purposes, the important part of this picture is given by the position of the cross, as its z plane 

Fig. 3.1. Real and imaginary projections of a complex spiral

Fig. 3.2. A resonant point in the z plane
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location directly affects what kind of sampled waveform is being generated in the time space. We define the cross 
(resonant) position by drawing a line which connects it with the z plane origin. We call the length of this line A, and we 
call the radian angle between this line and the x axis P. The position of the cross is then expressed in polar coordinates 
as 

Given that a filter has this particular resonant point, the time response of this filter when it receives a single input pulse 
will, according to z transform theory, be a spiral which proceeds down the time line. Its sinusoidal projection (on the 

floor in our previous analogy) will be given by the samples Ansin(nP) and its cosine projection (on the wall) will be 

given by the samples Ancos(nP), where time now is represented by uniformly spaced integer values of the discrete 
variable n. Because the sine projection (on the floor) is the imaginary part of our complex time response, we can show 
by Euler's identity that our samples of this spiral may be represented as 

Referring back to equation 3.1, we may now conclude that if the z plane resonance occurs at z = A exp(jP), the time 

response to a unit sample input is [A exp(jP)]n, and, in general, a resonance at z = q produces a unit sample response qn, 
where n assumes successive integer values in time.  

Equation 3.2 clearly indicates that the time growth or decay of this spiral response is determined by the factor An: When 
A is greater than 1, the spiral grows exponentially with n. When A is less than 1, the spiral decays exponentially with n. 
When A = 1, the spiral maintains constant magnitude. This illustrates why, in the design of stationary resonant filters, 
each point of resonance must be inside the unit circle which has its center at the z plane origin. Resonant points outside 
this circle have time responses which grow exponentially, and any filter with such a response would be unstable and 
useless.  

However, we are not concerned with filtering here, but rather with synthesis, and for this purpose movement in the z 
plane of a resonant point turns out to be useful: by moving the resonance we control its spiral response in time. Also, the 
spiral response gives us two modulated signals coupled in quadrature which can be directed to separate speakers if we 
desire. Typically only the real part of h(n) is used in filtering, the imaginary sine component of h(n) being canceled by 
the placement of a second resonance at a point where the original resonance is mirror-reflected across the x axis. In 
spiral synthesis, however, the imaginary signal is produced automatically, and may optionally be used or discarded.  

We must now consider the correspondence between a moving z plane resonance and its sampled time-domain spiral 
response. Our own laboratory analysis of real signals, such as those produced by plucked strings, strongly suggests that 
transient decay is not adequately characterized by simple exponential damping. Also, listening comparisons have 
revealed that matching real transient responses with as many as 90 poles at a 16 kHz sample rate does not produce a 
convincing imitation of the original sound quality. Particularly, an instrument such as the plucked monochord has a long 
transient which is not easily modeled as simple exponential decay. Spiral synthesis allows the manipulation of transient 
decay characteristics. We have only to excite the system once, with a single pulse, and the response can be made to ring 
on in a continuously evolving fashion, by allowing the point of resonance to drift in and out of the z plane unit circle.  

The angle P in figure 3.2 appears as an argument to the sine and cosine terms in equation 3.2. From this we see that P is 
the number of radians per sample in the complex time response h(n). For a fixed sample frequency, then, P sets the 
freqency of our synthsized time response where the conditions of the sampling theorem require that P be less than  
radians per sample for any given frequency.  

Z = A exp(jP) = A[cos(P) + jsin(P)] (3.1) 

h(n) = An[cos(nP) + jsin(nP)] 

= An[exp(jnP)] 

= [A [exp(jP)]n 

(3.2) 
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The magnitude A in figure 3.2 is raised to the nth power in equation 3.2, where it appears as an instantaneous envelope 
function. If the z plane resonance becomes dynamic, both A and P become functions of time variable n, and we 
accommodate this in our notation by writing the magnitude factor as A(n) and the phase term as P(n).  

Z transform theory allows us to write a recursive expression which generates successive samples of the spiral response 
as we proceed in time. If we let q(n) = A(n)exp[P(n)] be the z plane resonance, then it can be shown that an expression 
which generates the modulated spiral response is 

where (n), the unit sample function, is 1 when n = 0 and 0 otherwise.  

Fig. 3.3. Real part of a signal generated using the program in code 
listing 3.1 where the number of samples was ncnt = 100, radians per 

sample of the carrier was angl = pi2/100, initial pole distance was 
mag = 1.01, modulating amplitude was modscl = 0.2, and radians per 

sample of the modulator was phzdel = pi2/17. 

Fig. 3.4. Imaginary part of the signal shown in figure 3.3 

h(n) = (n) + q(n)h(n - 1), h(n) = 0, n < 0, (3.3) 

Fig. 3.5. Real part of a second spiral generated using the program 
in code listing 3.1 but with different parameter values. Here ncnt = 

160, angl = pi2/16, mag = 0.98, modscl = 0.15, and phzdel = 
pi2/23. 

Fig. 3.6. Imaginary part of the signal shown in figure 3.5 
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The capability to modulate real and imaginary output signals should now be clear. When A(n) is greater than 1, the 
amplitude of the time response starts to increase. When A(n) is less than 1, the time response will begin to decay. When 
P(n) is fixed, the frequency of the synthesized sine and cosine will be a constant P(n) radians per sample. When P(n) 
changes in time, the instantaneous phase of the synthesized sine and cosine are modulated accordingly. The current 
value of the phase will be the accumulated sum of all P(n) and the current value of the signal envelope will be the 
accumulated product of all A(n). Thus, at time n the process is bounded by 

n

A(i).
i = 1

CODE LISTING 3.1 C Implementation of Spiral Synthesis 

#DEFINE pi2 6.2831853   /* pi2 = 2  */ 

main() { 

FLOAT a,b;              /* dynamic tap weights */ 

FLOAT xr;               /* current real input 

                           sample */ 

FLOAT yr;               /* current real output 

                           sample */ 

FLOAT yi;               /* current imaginary 

                           output sample */ 

FLOAT dr;               /* previous (delayed) real 

                           output sample */ 

FLOAT di;               /* previous (delayed) 

                           imaginary output sample 

                           */ 

FLOAT angl;             /* radians per sample of 

                           output sinusoid before 

                           modulation. (Sets 

                           carrier frequency.) */ 

FLOAT angl;             /* current radians per 

                           sample of output 

                           sinusoid after 

                           modulation. */ 

FLOAT mag;              /* initial distance of 

                           pole position from z 

                           plane origin. */ 

FLOAT phz;              /* current radian angle of 

                           the modulating 

                           sinusoid. */ 

FLOAT phzdel;           /* constant radian 

                           increment to phz. 

                           Determines modulating 

                           freqency. */ 

FLOAT modscl;           /* constant peak amplitude 

                           of modulating sinusoid. 

                           */ 

FLOAT mod;              /* current value of the 

                           modulating sinusoid. */ 

INT n, i;               /* counters */ 

FLOAT real[2048];       /* real output array */ 

FLOAT imag[2048];       /* imaginary output array 

                           */ 

FLOAT ncnt;             /* number of complex 

                           samples to compute. */ 

DOUBLE fltin();         /* inputs floating-point 

                           number from tty. */ 

DOUBLE SIN(),COS(); 

 

PRINTF("number of samples to compute: "); 

ncnt = fltin(); 

n = ncnt; 

 

PRINTF( 

   "divisor for radian angle of carrier: "); 

angl = pi2 / fltin(); 
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PRINTF("initial pole distance from origin: "); 

mag = fltin(); 

 

PRINTF( 

   "two-pi divisor for radian angle of modulator: "); 

phzdel = pi2 / fltin(); 

 

phz = 0.; 

dr = di = 0.;    /* initialize delays to zero. */ 

xr = 1.0;        /* initialize input with a 

                    unit pulse. */ 

i = 0; 

WHILE(n--) {     /* do it! */ 

mod = modscl * SIN(phz); 

phz = phz + phzdel; 

mg2 = mag + mod; 

angl2 = angl + mod; 

 

a = mg2 * COS(angl2);   /* set current value*/ 

b = mg2 * SIN(angl2);   /* of tap weights. */ 

 

   yr = xr + a * dr - b * di; 

   yi = b * dr + a * di; 

 

   dr = yr;   /* store delay samples */ 

   di = yi; 

 

   xr = 0.;   /* input dies after first sample. */ 

 

   real[i] = yr; 

   imag[i] = yi; 

   i++; 

} 

rpltek(real,i,1.0,ncnt,-1);   /* plot real 

                                 output array. */ 

rpltek(imag,i,1.0,ncnt,0);    /* plot imaginary 

                                 output array. */ 

} 

Fig. 3.7. Spectrum of the signal shown in figure 3.3, generated 
at a sampling rate of 20 kHz. The carrier occurs at 20 000/100 
= 200 Hz. Sidebands are generated at fc ± nfm, n = 1, 2, 3, . . ., 

with the modulator fm = 20 000/17 = 1176.5 Hz. (Figures 3.7 

and 3.8 were supplied by the editor; responsibility for errors in 
these two figures and the accompanying captions lies with him 

and not with the author.) 
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A SYNTHESIS PROGRAM 

For purposes of illustration, a generating program is given in code listing 3.1, along with plots of synthesized 
waveforms. We must remember that the multiplication in equation 3.3 is complex. Two storage locations are required 
for the delayed sample of h(n) (dr, di in code listing 3.1). Current real and imaginary values of q(n) are the dynamic tap 

weights a, b in that code listing. The synthesized output which we have so far called h(n) is stored in the arrays real 

and imag. A sinusoidal modulator is used; for the sake of simplicity, the same modulation is applied to both the 

magnitude and the phase of the z plane resonance.  

Figures 3.3 and 3.4 show the real and imaginary parts, respectively, of a complex spiral generated by the program in 
code listing 3.1. Figures 3.5 and 3.6 again show real and imaginary parts of a second spiral generated from different 
input parameter values.  

The waveforms we have generated for illustration help to convey the fact that even the simplest approach to modulation 
can produce time-waveforms which look interesting. However, the independence of amplitude and phase modulators is 
easily accommodated and allows fine control over the timbral evolution of the spiral.  

REFERENCES 

Greenwood, D. D. 1962. Approximate calculation of the dimensions of traveling-wave envelopes in four species. 
Journal of the Acoustical Society of America 34:1364-69.  

Petersen, Tracy L. 1980. Acoustic signal processing in the context of a perceptual model. Technical Report UTEC-CSc-
80-113. Ph.D. diss., Department of Computer Science, University of Utah.  

Petersen, Tracy L., and S. F. Boll. 1983. Critical band analysis-synthesis. IEEE proceedings on Acoustics, Speech, and 
Signal Processing ASSP-31(3):656-63.  

Scharf, E. 1961. Complex sounds and critical bands. Psychological Bulletin 58:205-17.  

Fig. 3.8. Spectrum of the signal shown in figure 3.5, generated 
at a sampling rate of 20 kHz. Since the signal is much shorter 

than that of figure 3.3, the spectral peaks are much broader 
here. Again, the carrier lies at 20 000/16 = 1250 Hz; the 

modulator is 20 000/23 = 870 Hz. The double peak at the left 
occurs because two sidebands lie very close to each other. The 

first-order sideband (1250 - 870) appears at 380 Hz, and the 
next-lower sideband (1250 - 2 × 870 = -490) undergoes "0 Hz 

wraparound" to fall at 490 Hz. 
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